NASA/JPL-Caltech

## **Colliding Clouds**

in the

# Milky Way's Central Bar

Savannah Gramze Juergen Ott, David Meier, Brian Svoboda, Yancy Shirley, Adam Ginsburg







#### Introduction

- The Milky Way is a barred spiral galaxy.
- Gas flows into the Galactic Center (GC) from the spiral arms along the bar potential.
- The gas and dust streaming in from the spiral arms form molecular clouds.
- These clouds become hotter and more turbulent as they travel from the disk along the arms approaching the Central Molecular Zone (CMZ).





- Continuation of last summer's work on ALMA spectral line data.
- Two clouds near the galactic center at point symmetric coordinates. G5 and B1.
- Both have properties that place them near the Galactic Center.



- Continuation of last summer's work on ALMA spectral line data.
- Two clouds near the galactic center at point symmetric coordinates. G5 and B1.
- Both have properties that place them near the Galactic Center.

![](_page_3_Figure_4.jpeg)

## Motivation

- Not symmetric processes on opposite sides of the galaxy's bar.
- Using Sormani et al's model, we interpreted the gas flows as:
  - G5 is a molecular gas cloud that overshot the CMZ and is in the process of colliding with an inbound dust lane.
  - B1 is either a view down a dust lane or the end of the bar.
- This summer's goal was to look at the second part of G5, which was not delivered by last summer.

![](_page_4_Figure_6.jpeg)

![](_page_4_Figure_7.jpeg)

![](_page_5_Figure_0.jpeg)

#### Observations

- ALMA, Atacama Compact Array.
  - Both 7m and TP observations.
- About 60 hours in total used to observe.
- Band 6, around 220 GHz. TP 12m resolution of 30" (1.25pc at 8.2kpc).
  - Resolution ~6" (~0.25pc) with ACA.
- Four regions in total, two at each cloud.
  - This summer focused on new G5 total power data.
- Observed transitions of CO (2-1) isotopologues, H30 $\alpha$ , SiO (5-4), CH<sub>3</sub>OH (4<sub>2,2</sub>-3<sub>1,2</sub>), OCS (18-17), H<sub>2</sub>CO (3<sub>2,1</sub>-2<sub>2,0</sub>), and H<sub>2</sub>CO (3<sub>0,3</sub>-2<sub>0,2</sub>).

![](_page_6_Picture_9.jpeg)

![](_page_7_Figure_0.jpeg)

#### **Total Power Data Reduction**

ALMA delivers calibrated image cubes.

#### Baseline

- Residual baseline ripple present in most of the data cubes.
- Removed by using Python (LMFIT) to create a sine wave across the cubes using channels without emission.
- Averaged cube spatially, derived a sine curve for the entire cube, subtracted it from each pixel.

#### **Combining Cubes**

• The two parts of G5 were merged by averaging where they overlapped.

![](_page_8_Figure_8.jpeg)

![](_page_9_Figure_0.jpeg)

GALACT

25 🔶

![](_page_10_Figure_1.jpeg)

- Velocity gradients
- Large dispersion
- Interface

![](_page_10_Figure_5.jpeg)

![](_page_11_Figure_1.jpeg)

- Velocity gradients ۲
- Large dispersion ۲

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_1.jpeg)

#### Sormani et al. 2019

![](_page_13_Figure_3.jpeg)

### Various Slices

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

Chemical Line Abundance Ratios.

- Higher Isotopologue ratio (12/13) trace where the cloud is translucent in CO.
- Clear difference between the clouds.

![](_page_14_Figure_6.jpeg)

![](_page_14_Figure_7.jpeg)

Kinetic Temperature of the right, over -shooting, cloud is higher than the left, dustlane, one. Traced with H<sub>2</sub>CO.

- Shock Tracer Abundance Ratios.
- Enhanced downstream of the interface.

#### Conclusion

- Observed gas flows within the Milky Way's bar helps to create a better model of the galaxy.
- ALMA used to observe two clouds which seemed relevant to the bar model.
- Found that G5 is composed of two clouds near the Galactic Center which are colliding with each other.
- This collision supports Sormani's model of gas overshooting the CMZ after travelling down a dust lane and hitting the dust lane on the other side of the bar.

#### Sormani et al. 2019

![](_page_15_Figure_6.jpeg)

### Line Intensity

#### G5b (from last summer)

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_25_Figure_1.jpeg)

High velocity cloud on left is in the dust lane shock front, low

#### **Observations**

- ALMA, Atacama Compact Array.
  - Both 7m and TP observations.
- About 60 hours in total used to observe.
- Band 6, around 220 GHz. TP 12m resolution of 30" and structure size of 1.25pc.
  - Resolution ~6" with ACA, structure sizes of ~0.25pc at 8.2kpc away in the galactic center.
- Four regions in total, two at each cloud.
  - B1 (Bania 1) at (I,b) = (-5.4,+0.4), G5 at (+5.4, -0.4)
  - This summer focused on G5.
- Observed transitions of CO isotopologues, H30α, HC<sub>3</sub>N, SiO, and two H<sub>2</sub>CO transitions.

#### ALMA:(ESO/NAOJ/NRAO): C. Padilla