# ACES and Dust Ridge Cloud C JWST

Savannah Gramze

### Introduction

- Savannah Gramze
- PhD Student
- University of Florida
- Advisor: Adam Ginsburg
- WP1 and WP2
- Research Interests:
  - Star Formation in the Galactic Center Dust Ridge
  - Galactic Center Structure and Dynamics
- Hobbies: Playing Pokemon, Sculpture, Digital Art, Writing





### Spitzer 8.0 µm



#### HNCO 4-3



#### Dust Ridge







### CS 2-1 Integrated Intensity



### CS 2-1 Integrated Intensity



### (S 2-1



#### JWST Nircam F405N

![](_page_11_Picture_0.jpeg)

# Use Cases for ACES Data Products

### SiO 2-1 v=1 Maser Catalog

- SiO masers are generally found in the atmospheres of AGB stars
- AGB stars are very bright in IR data!
- ACES observes these masers across the whole Galactic Center
- A catalog of these masers could be used for astrometric correction of JWST and other IR observations of the GC

![](_page_13_Picture_5.jpeg)

### SiO 2-1 v=1 Maser Catalog

- SiO masers are generally found in the atmospheres of AGB stars
- AGB stars are very bright in IR data!
- ACES observes these masers across the whole Galactic Center
- A catalog of these masers could be used for astrometric correction of JWST and other IR observations of the GC

![](_page_14_Picture_5.jpeg)

# Outflow Tracers

![](_page_16_Figure_0.jpeg)

Declination

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_0.jpeg)

#### Outflow Signature Association Between JWST & ALMA

![](_page_19_Figure_0.jpeg)

# Declination

## Outflow Tracers

- ACES has several lines which act as outflow tracers
- When comparing ACES data with our ALMA data, we see that there is an association between outflow features.

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

![](_page_20_Figure_5.jpeg)

![](_page_20_Figure_6.jpeg)

![](_page_21_Picture_0.jpeg)

### Spotlight: Star Forming Filament

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

ALMA Band 3 & CS 2-1

![](_page_25_Figure_3.jpeg)

#### Rotate POV

![](_page_25_Figure_5.jpeg)

![](_page_26_Figure_0.jpeg)

ALMA Band 3 & CS 2-1

### Lines Detected

- Some are very low S/N detections
  - CS 2-1
  - HNCO 4-3
  - HCO+ 1-0
  - SiO 2-1
  - H13CO+ 1-0
  - **\*\*\*HN13C 1-0**
  - SO  $3_2 2_1$
  - HC3Ń 11-10
  - H13CN 1-0
- No emission in JWST, but the gas is associated with a dark filament
- Line of sight velocity
  - ~ 3kpc ring?

![](_page_27_Picture_14.jpeg)

![](_page_28_Figure_0.jpeg)

HN<sup>13</sup>C 1-0

# Spotlight: The Smudge

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

pos.eq.ra

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

### Spotlight: The Smudge

- Center of radio continuum source is offset from center of extinction in infrared
- No infrared source
- 10 mJy Band 6
- 0.48 mJy Band 3
- Spectral Index = 3.75
  - Dusty!
- Mass ~ 10 Msun
- Line of sight velocity ~ 33 km/s
- FWHM ~ 10 km/s
- Seems to be in the GC based on velocity and wide FWHM

![](_page_36_Picture_11.jpeg)

# Conclusions

- An ACES SiO maser catalog will be helpful for astrometric correction across the CMZ
- Outflow tracers in ACES data correspond with those in other data
- Isolated ACES continuum sources are likely real.